大语言模型(LLM) 正在成为一种变革性技术,使开发人员能够构建以前无法构建的应用程序。但是,单独使用这些LLM通常不足以创建一个真正强大的应用程序——当你可以将它们与其他计算或知识来源相结合时,便可能实现其真正的能力。 LangChain是一个用于开发由语言模型驱动的应用程序的框架,允许开发人员将语言模型连接到其他数据源并与其环境相交互。LangChain旨在帮助开发者在以下六个主要领域,按照复杂性递增的顺序: 📃 LLMs and Prompts: 这包括提示管理、提示优化、适用于所有 LLM 的通用界面以及用于处理 LLM 的通用实用程序。 🔗 Chains: 链不仅仅是单个 LLM 调用,而是调用序列(无论是对 LLM 还是对不同的实用程序)。 LangChain 为链提供标准接口、与其他工具的大量集成以及用于常见应用程序的端到端链。 📚 Data Augmented Generation: 数据增强生成涉及特定类型的链,这些链首先与外部数据源交互以获取数据以用于生成步骤。 这方面的例子包括对长文本的总结和对特定数据源的问答。 🤖 Agents: 代理涉及 LLM 做出关…
相关导航
暂无评论...